Skip to content
Snippets Groups Projects
Commit 8e90785a authored by Onica Klaudia's avatar Onica Klaudia
Browse files

Instrumental variable method, noise-free system

parent 8c051663
No related branches found
No related tags found
No related merge requests found
...@@ -53,21 +53,21 @@ legend('S', 'I', 'R', 'C'); ...@@ -53,21 +53,21 @@ legend('S', 'I', 'R', 'C');
%% Least square estimation of the noise-free modell %% Least square estimation of the noise-free modell
% dSdt + dIdt = nu - mu*S - (gamma+mu)*I % dSdt + dIdt = nu - mu*S - (gamma+mu)*I
X_SI = [ones(size(y, 1)-1, 1), y(1:end-1, 1), y(1:end-1, 2)]; X_SI1 = [ones(size(y, 1)-1, 1), y(1:end-1, 1), y(1:end-1, 2)];
Y_SI = y(2:end,1) - y(1:end-1,1) + y(2:end,2) - y(1:end-1,2); Y_SI1 = y(2:end,1) - y(1:end-1,1) + y(2:end,2) - y(1:end-1,2);
%Y_SI2 = y_noisy(2:end,1) + y_noisy(2:end,2); %Y_SI2 = y_noisy(2:end,1) + y_noisy(2:end,2);
theta_SI = abs(lsq(X_SI, Y_SI)); theta_SI = abs(lsq(X_SI1, Y_SI1));
%theta_SI2 = lsq(X_SI, Y_SI2); %theta_SI2 = lsq(X_SI, Y_SI2);
% dIdt = beta*I*S + epsilon*beta*C*S - (gamma+mu)*I % dIdt = beta*I*S + epsilon*beta*C*S - (gamma+mu)*I
X_I = [y(1:end-1,1).*y(1:end-1,2), y(1:end-1,1).*y(1:end-1,4), y(1:end-1,2)]; X_I1 = [y(1:end-1,1).*y(1:end-1,2), y(1:end-1,1).*y(1:end-1,4), y(1:end-1,2)];
Y_I = y(2:end, 2) - y(1:end-1, 2); Y_I1 = y(2:end, 2) - y(1:end-1, 2);
theta_I = abs(lsq(X_I, Y_I)); theta_I = abs(lsq(X_I1, Y_I1));
% dCdt = gamma*q*I - (Gamma-mu)*C % dCdt = gamma*q*I - (Gamma-mu)*C
X_C = [y(1:end-1, 2), y(1:end-1, 4)]; X_C1 = [y(1:end-1, 2), y(1:end-1, 4)];
Y_C = y(2:end, 4) - y(1:end-1, 4); Y_C1 = y(2:end, 4) - y(1:end-1, 4);
theta_C = abs(lsq(X_C, Y_C)); theta_C = abs(lsq(X_C1, Y_C1));
[nu_lsq1, mu_lsq1, beta_lsq1, epsilon_lsq1, gamma_lsq1, q_lsq1, Gamma_lsq1] = deal(theta_SI(1), ... [nu_lsq1, mu_lsq1, beta_lsq1, epsilon_lsq1, gamma_lsq1, q_lsq1, Gamma_lsq1] = deal(theta_SI(1), ...
theta_SI(2), theta_I(1), theta_I(2)/theta_I(1), theta_SI(3)-theta_SI(2), ... theta_SI(2), theta_I(1), theta_I(2)/theta_I(1), theta_SI(3)-theta_SI(2), ...
...@@ -101,20 +101,60 @@ legend('S', 'I', 'R', 'C'); ...@@ -101,20 +101,60 @@ legend('S', 'I', 'R', 'C');
%% Least square estimation after adding noise to the modell %% Least square estimation after adding noise to the modell
% dSdt + dIdt = nu - mu*S - (gamma+mu)*I % dSdt + dIdt = nu - mu*S - (gamma+mu)*I
X_SI = [ones(size(y_noisy, 1)-1, 1), y_noisy(1:end-1, 1), y_noisy(1:end-1, 2)]; X_SI2 = [ones(size(y_noisy, 1)-1, 1), y_noisy(1:end-1, 1), y_noisy(1:end-1, 2)];
Y_SI = y_noisy(2:end,1) - y_noisy(1:end-1,1) + y_noisy(2:end,2) - y_noisy(1:end-1,2); Y_SI2 = y_noisy(2:end,1) - y_noisy(1:end-1,1) + y_noisy(2:end,2) - y_noisy(1:end-1,2);
theta_SI = abs(lsq(X_SI, Y_SI)); theta_SI = abs(lsq(X_SI2, Y_SI2));
% dIdt = beta*I*S + epsilon*beta*C*S - (gamma+mu)*I % dIdt = beta*I*S + epsilon*beta*C*S - (gamma+mu)*I
X_I = [y_noisy(1:end-1,1).*y_noisy(1:end-1,2), y_noisy(1:end-1,1).*y_noisy(1:end-1,4), y_noisy(1:end-1,2)]; X_I2 = [y_noisy(1:end-1,1).*y_noisy(1:end-1,2), y_noisy(1:end-1,1).*y_noisy(1:end-1,4), y_noisy(1:end-1,2)];
Y_I = y_noisy(2:end, 2) - y_noisy(1:end-1, 2); Y_I2 = y_noisy(2:end, 2) - y_noisy(1:end-1, 2);
theta_I = abs(lsq(X_I, Y_I)); theta_I = abs(lsq(X_I2, Y_I2));
% dCdt = gamma*q*I - (Gamma-mu)*C % dCdt = gamma*q*I - (Gamma-mu)*C
X_C = [y_noisy(1:end-1, 2), y_noisy(1:end-1, 4)]; X_C2 = [y_noisy(1:end-1, 2), y_noisy(1:end-1, 4)];
Y_C = y_noisy(2:end, 4) - y_noisy(1:end-1, 4); Y_C2 = y_noisy(2:end, 4) - y_noisy(1:end-1, 4);
theta_C = abs(lsq(X_C, Y_C)); theta_C = abs(lsq(X_C2, Y_C2));
[nu_lsq2, mu_lsq2, beta_lsq2, epsilon_lsq2, gamma_lsq2, q_lsq2, Gamma_lsq2] = deal(theta_SI(1), ... [nu_lsq2, mu_lsq2, beta_lsq2, epsilon_lsq2, gamma_lsq2, q_lsq2, Gamma_lsq2] = deal(theta_SI(1), ...
theta_SI(2), theta_I(1), theta_I(2)/theta_I(1), theta_SI(3)-theta_SI(2), ... theta_SI(2), theta_I(1), theta_I(2)/theta_I(1), theta_SI(3)-theta_SI(2), ...
theta_C(1)/(theta_SI(3)-theta_SI(2)), theta_C(2)+theta_SI(2)); theta_C(1)/(theta_SI(3)-theta_SI(2)), theta_C(2)+theta_SI(2));
\ No newline at end of file
%% Instrumental variable method
% Matrices composed from the instrumental variables
KSZI_SI = [ones(size(y, 1)-1, 1), y_lsq1(1:end-1, 1), y_lsq1(1:end-1, 2)];
KSZI_I = [y_lsq1(1:end-1,1).*y_lsq1(1:end-1,2), y_lsq1(1:end-1,1).*y_lsq1(1:end-1,4), y_lsq1(1:end-1,2)];
KSZI_C = [y_lsq1(1:end-1, 2), y_lsq1(1:end-1, 4)];
theta_SI = abs(iv4(X_SI1, Y_SI1, KSZI_SI));
theta_I = abs(iv4(X_I1, Y_I1, KSZI_I));
theta_C = abs(iv4(X_C1, Y_C1, KSZI_C));
[nu_iv4, mu_iv4, beta_iv4, epsilon_iv4, gamma_iv4, q_iv4, Gamma_iv4] = deal(theta_SI(1), ...
theta_SI(2), theta_I(1), theta_I(2)/theta_I(1), theta_SI(3)-theta_SI(2), ...
theta_C(1)/(theta_SI(3)-theta_SI(2)), theta_C(2)+theta_SI(2));
y_iv4 = zeros(size(y, 1), 4);
y_iv4(1,:) = [S0, I0, R0, C0];
for i = 2:length(y_iv4)
% dSdt = nu - (beta*I + epsilon*beta*C)*S - mu*S
y_iv4(i,1) = y_iv4(i-1,1) + nu_iv4 - (beta_iv4*y_iv4(i-1,2) + ...
epsilon_iv4*beta_iv4*y_iv4(i-1,4))*y_iv4(i-1,1) - mu_iv4*y_iv4(i-1,1);
% dIdt = (beta*I + epsilon*beta*C)*S - gamma*I - mu*I
y_iv4(i,2) = y_iv4(i-1,2) + (beta_iv4*y_iv4(i-1,2) + ...
epsilon_iv4*beta_iv4*y_iv4(i-1,4))*y_iv4(i-1,1) - ...
gamma_iv4*y_iv4(i-1,2) - mu_iv4*y_iv4(i-1,2);
% dRdt = gamma*(1-q)*I + Gamma*C - mu*R
y_iv4(i,3) = y_iv4(i-1,3) + gamma_iv4*(1-q_lsq1)*y_iv4(i-1,2) + ...
Gamma_iv4*y_iv4(i-1,4) - mu_iv4*y_iv4(i-1,3);
% dCdt = gamma*q*I - Gamma*C - mu*C
y_iv4(i,4) = y_iv4(i-1,4) + gamma_iv4*q_iv4*y_iv4(i-1,2) - ...
Gamma_iv4*y_iv4(i-1,4) - mu_iv4*y_iv4(i-1,3);
end
figure(5)
plot(t, y_iv4);
title('Instrumental variable method (noise-free modell)');
xlabel('Time(days)');
ylabel('Number of individuals');
legend('S', 'I', 'R', 'C');
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment