Skip to content
Snippets Groups Projects
Commit fa82e642 authored by Vajay Mónika's avatar Vajay Mónika
Browse files

fix saving pathes

parent 7041b274
Branches
No related tags found
No related merge requests found
......@@ -3,7 +3,11 @@ import os
from pprint import pprint
FOLDER_PATH = "./Moni_train_data/"
FOLDER_PATH = "./train_data/"
OUTPUT_FILE = 'PROBA_PROBA.pickle' # Output merged file
current_dir = os.path.dirname(__file__)
OUTPUT_FOLDER = os.path.abspath(os.path.join(current_dir, 'merged_training_data', OUTPUT_FILE))
#FOLDER_PATH = "./proba_data/"
def change_label_name(input_path, old_label, new_label):
......@@ -64,6 +68,5 @@ def merge_pickle_files(input_files, output_file):
if __name__ == "__main__":
#change_label_name(FOLDER_PATH + "scrolling_right_Moni.pickle", "sscrolling right", "scrolling right")
input_files = os.listdir(FOLDER_PATH) # List of .pickle file paths
output_file = 'mouse_train_data_all.pickle' # Output merged file
merge_pickle_files(input_files, output_file)
merge_pickle_files(input_files, OUTPUT_FOLDER)
......@@ -2,6 +2,7 @@ import cv2
import random
import mediapipe as mp
import pickle
import os
def landmarks2px(frame_sizes, landmark_list):
if len(landmark_list) == 0:
......@@ -162,8 +163,11 @@ def main():
cv2.destroyAllWindows()
print("Save generated data")
current_dir = os.path.dirname(__file__)
filename = input("give filename: ")
f = open(filename + '.pickle', 'wb')
folder_path = os.path.abspath(os.path.join(current_dir, os.pardir, 'train_data', filename))
f = open(folder_path + '.pickle', 'wb')
pickle.dump({'data': data, 'label':labels}, f)
f.close()
......
......@@ -3,6 +3,9 @@ import random
import mediapipe as mp
import pickle
import numpy as np
import os
FILENAME = 'PROBA_PROBA.p'
def landmarks2px(frame_sizes, landmark_list):
if len(landmark_list) == 0:
......@@ -68,7 +71,9 @@ def write_landmark_on_frame(frame, landmark_list, landmark_list_px):
## main: open video and do hand detection
def main():
# load model
model_dict = pickle.load(open('./trained_Moni_data.p', 'rb'))
current_dir = os.path.dirname(__file__)
model_path = os.path.abspath(os.path.join(current_dir, os.pardir, 'trained_models', FILENAME))
model_dict = pickle.load(open(model_path, 'rb'))
model = model_dict['model']
# create hand detection object
......
......@@ -4,9 +4,14 @@ import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import os
filename = 'mouse_train_data_all'
data_dict = pickle.load(open(filename + '.pickle', 'rb'))
filename = 'PROBA_PROBA'
current_dir = os.path.dirname(__file__)
file_path = os.path.abspath(os.path.join(current_dir, os.pardir, 'merged_training_data', filename))
data_dict = pickle.load(open(file_path + '.pickle', 'rb'))
print(data_dict.keys())
coordinates = np.asarray(data_dict['data'])
......@@ -25,6 +30,7 @@ score = accuracy_score(y_predict, y_test)
print(f'accuracy: {score*100}%')
f = open('trained_mouse_data.p', 'wb')
output_path = os.path.abspath(os.path.join(current_dir, os.pardir, 'trained_models', filename))
f = open(output_path + '.p', 'wb')
pickle.dump({'model': model}, f)
f.close()
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment