Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
IT Management Project
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Formanek Balázs István
IT Management Project
Commits
b3016d86
Commit
b3016d86
authored
7 months ago
by
Formanek Balázs István
Browse files
Options
Downloads
Patches
Plain Diff
mediapipe library hand detection exploration
parent
16e83a10
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
hand detection discovery.py
+107
-0
107 additions, 0 deletions
hand detection discovery.py
with
107 additions
and
0 deletions
hand detection discovery.py
0 → 100644
+
107
−
0
View file @
b3016d86
import
cv2
import
random
import
mediapipe
as
mp
def
write_landmark_positions_on_frame
(
frame
,
landmark_list
):
if
len
(
landmark_list
)
==
0
:
return
frame
height
,
width
=
frame
.
shape
[:
2
]
color
=
(
250
,
0
,
0
)
for
lm
in
landmark_list
:
# landmark position in pixels
pos_px
=
((
int
(
width
*
lm
[
0
])),
int
(
height
*
lm
[
1
]))
text
=
f
'
{
pos_px
[
0
]
}
:
{
pos_px
[
1
]
}
'
org
=
(
pos_px
[
0
]
-
20
,
pos_px
[
1
]
-
10
)
cv2
.
putText
(
img
=
frame
,
text
=
text
,
org
=
org
,
fontFace
=
cv2
.
FONT_HERSHEY_DUPLEX
,
fontScale
=
.
5
,
color
=
color
,
thickness
=
1
)
return
frame
def
transform_to_relative
(
landmark_list
):
if
len
(
landmark_list
)
==
0
:
return
landmark_list
origon
=
landmark_list
[
0
]
relative_landmark_list
=
[]
for
lm
in
landmark_list
:
rel_lm
=
(
lm
[
0
]
-
origon
[
0
],
lm
[
1
]
-
origon
[
1
])
print
(
rel_lm
)
relative_landmark_list
.
append
(
rel_lm
)
## main: open video and do hand detection
def
main
():
# create hand detection object
mp_hands
=
mp
.
solutions
.
hands
mp_drawing
=
mp
.
solutions
.
drawing_utils
# open video
cap
=
cv2
.
VideoCapture
(
0
)
# if cannot open video give warning
if
not
cap
.
isOpened
():
print
(
"
Warning: cannot reach camera
"
)
else
:
print
(
"
Program is running, push
'
q
'
to quit.
"
)
# mediapipe hand object
with
mp_hands
.
Hands
(
max_num_hands
=
1
,
model_complexity
=
1
,
min_detection_confidence
=
0.9
,
min_tracking_confidence
=
0.9
)
as
hands
:
# read frames from webcamera
while
cap
.
isOpened
():
ret
,
frame
=
cap
.
read
()
if
not
ret
:
print
(
"
Warning: cannot read camera input
"
)
break
# flip frame to appear as a mirror
frame
=
cv2
.
flip
(
frame
,
1
)
frameRGB
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
## hand detection
results
=
hands
.
process
(
frameRGB
)
landmark_list
=
[]
if
results
.
multi_hand_landmarks
:
# multi_hand_landmarks can store two hands, if max_num_hands=2, in which case we have to iterate through the hands with
# for num, hand in enumerate(results.multi_hand_landmarks):
# one hand is detected, because max_num_hands=1
hand_landmarks
=
results
.
multi_hand_landmarks
[
0
]
# draw landmarks on frame
mp_drawing
.
draw_landmarks
(
frameRGB
,
hand_landmarks
,
mp_hands
.
HAND_CONNECTIONS
,
mp_drawing
.
DrawingSpec
(
color
=
(
250
,
0
,
0
),
thickness
=
2
,
circle_radius
=
4
),
mp_drawing
.
DrawingSpec
(
color
=
(
0
,
250
,
0
),
thickness
=
2
,
circle_radius
=
2
),
)
# get landmark list with indices described in https://github.com/google-ai-edge/mediapipe/blob/master/mediapipe/python/solutions/hands.py
for
lm
in
hand_landmarks
.
landmark
:
landmark_list
.
append
((
lm
.
x
,
lm
.
y
))
# relate landmarks to the first (wrist) position
relative_landmark_list
=
transform_to_relative
(
landmark_list
)
# write positions on frame
frameRGB
=
write_landmark_positions_on_frame
(
frameRGB
,
landmark_list
)
# transform back RGB and show frame with annotation
frame_annotated
=
cv2
.
cvtColor
(
frameRGB
,
cv2
.
COLOR_RGB2BGR
)
cv2
.
imshow
(
'
Hand tracking
'
,
frame_annotated
)
# or show original frame without annotation
# cv2.imshow('Hand tracking', frame)
if
cv2
.
waitKey
(
1
)
&
0xFF
==
ord
(
'
q
'
):
print
(
"
Quit camera
"
)
break
cap
.
release
()
cv2
.
destroyAllWindows
()
print
(
"
Program closed
"
)
if
__name__
==
'
__main__
'
:
main
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment