diff --git a/excel_to_edf.py b/excel_to_edf.py
new file mode 100644
index 0000000000000000000000000000000000000000..05b8866495fd7934da2bd77c9f78a5bc772a3006
--- /dev/null
+++ b/excel_to_edf.py
@@ -0,0 +1,46 @@
+import pandas as pd
+import pyedflib
+import numpy as np
+
+def convert_excel_to_edf(excel_path, edf_output_path):
+    excel_data = pd.ExcelFile(excel_path) #Excel megnyitása
+
+    recordings_data = excel_data.parse('Recordings') #A két munkalap betöltése
+    patients_data = excel_data.parse('Patients')
+
+    patient_data = patients_data.iloc[0].to_dict()  # Az első sorból kiszedi az adatokat
+    patient_name = patient_data.get('Name', 'N/A')
+    patient_birthdate = patient_data.get('Birthdate', 'N/A')
+    patient_sex = patient_data.get('Sex', 'N/A')
+    patient_ID = patient_data.get ('ID', 'N/A')
+    record_date = patient_data.get ('Recording_date', 'N/A')
+    record_lenght = patient_data.get ('Record_lenght', 'N/A')
+    patient_height = patient_data.get ('Height', 'N/A')
+    patient_weight = patient_data.get ('Weight', 'N/A')
+    notes = patient_data.get ('Notes', 'N/A')
+
+    # if pd.isna(patient_birthdate):
+    #     patient_birthdate = 'N/A'
+    # else:
+    #     patient_birthdate = str(patient_birthdate.date())
+
+    # Jeladatok kinyerése
+    signal_labels = recordings_data.columns.tolist()
+    signals = [recordings_data[col].to_numpy() for col in signal_labels]
+
+    # EDF létrehozása
+    with pyedflib.EdfWriter(edf_output_path, len(signals), file_type=pyedflib.FILETYPE_EDFPLUS) as edf:
+        # # Header beállítása
+        # edf.setHeader({
+
+        # })
+
+
+
+if __name__ == "__main__":
+
+    excel_path = "test_generator2.xlsx"
+
+    edf_output_path = "output_data.edf"
+
+    convert_excel_to_edf(excel_path, edf_output_path)